智能制造,源于人工智能的研究,一般认为智能是知识和智力的总和,前者是智能的基础,后者是指获取和运用知识求解的能力。智能制造应当包含智能制造技术和智能制造系统,智能制造系统不仅能够在实践中不断地充实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。
基本原理1、制造原理
从智能制造系统的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想,应用分布式人工智能中多Agent系统的理论与方法,实现制造单元的柔性智能化与基于网络的制造系统柔性智能化集成。根据分布系统的同构特征,在智能制造系统的一种局域实现形式基础上,实际也反映了基于Internet的全球制造网络环境下智能制造系统的实现模式。
2、分布式网络化
智能制造系统的本质特征是个体制造单元的“自主性”与系统整体的“自组织能力”,其基本格局是分布式多自主体智能系统。基于这一思想,同时考虑基于Internet的全球制造网络环境,可以提出适用于中小企业单位的分布式网络化IMS的基本构架。一方面通过Agent赋予各制造单元以自主权,使其自治独立、功能完善;另一方面,通过Agent之间的协同与合作,赋予系统自组织能力。
基于以上构架,结合数控加工系统,开发分布式网络化原型系统相应的可由系统经理、任务规划、设计和生产者等四个结点组成。
系统经理结点包括数据库服务器和系统Agent两个数据库服务器,负责管理整个全局数据库,可供原型系统中获得权限的结点进行数据的查询、读取,存储和检索等操作,并为各结点进行数据交换与共享提供一个公共场所,系统Agent则负责该系统在网络与外部的交互,通过Web服务器在Internet上发布该系统的主页,网上用户可以通过访问主页获得系统的有关信息,并根据自己的需求,以决定是否由该系统来满足这些需求,系统Agent还负责监视该原型系统上各个结点间的交互活动,如记录和实时显示结点间发送和接受消息的情况、任务的执行情况等。
任务规划结点由任务经理和它的代理(任务经理Agent)组成,其主要功能是对从网上获取的任务进行规划,分解成若干子任务,然后通过招标——投标的方式将这些任务分配个各个结点。
设计结点由CAD工具和它的代理(设计Agent)组成,它提供一个良好的人机界面以使设计人员能有效地和计算机进行交互,共同完成设计任务。CAD工具用于帮助设计人员根据用户要求进行产品设计;而设计Agent则负责网络注册、取消注册、数据库管理、与其他结点的交互、决定是否接受设计任务和向任务发送者提交任务等事务。
生产者结点实际是该项目研究开发的一个智能制造系统(智能制造单元),包括加工中心和它的网络代理(机床Agent)。该加工中心配置了智能自适应。该数控系统通过智能控制器控制加工过程,以充分发挥自动化加工设备的加工潜力,提高加工效率;具有一定的自诊断和自修复能力,以提高加工设备运行的可靠性和安全性;具有和外部环境交互的能力;具有开放式的体系结构以支持系统集成和扩展。
综合特征智能制造和传统的制造相比,智能制造系统具有以下特征:
自律能力:即搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。具有自律能力的设备称为“智能机器”,“智能机器”在一定程度上表现出独立性、自主性和个性,甚至相互间还能协调运作与竞争。强有力的知识库和基于知识的模型是自律能力的基础。
人机一体化:IMS不单纯是“人工智能”系统,而是人机一体化智能系统,是一种混合智能。基于人工智能的智能机器只能进行机械式的推理、预测、判断,它只能具有逻辑思维(专家系统),最多做到形象思维(神经网络),完全做不到灵感(顿悟)思维,只有人类专家才真正同时具备以上三种思维能力。因此,想以人工智能全面取代制造过程中人类专家的智能,独立承担起分析、判断、决策等任务是不现实的。人机一体化一方面突出人在制造系统中的核心地位,同时在智能 机器的配合下,更好地发挥出人的潜能,使人机之间表现出一种平等共事、相互“理解”、相互协作的关系,使二者在不同的层次上各显其能,相辅相成。
因此,在智能制造系统中,高素质、高智能的人将发挥更好的作用,机器智能和人的智能将真正地集成在一起,互相配合,相得益彰。
虚拟现实技术:这是实现虚拟制造的支持技术,也是实现高水平人机一体化的关键技术之一。虚拟现实技术(Virtual Reality)是以计算机为基础,融合信号处理、动画技术、智能推理、预测、仿真和多媒体技术为一体;借助各种音像和传感装置,虚拟展示现实生活中的各种过程、物件等,因而也能拟实制造过程和未来的产品,从感官和视觉上使人获得完全如同真实的感受。但其特点是可以按照人们的意愿任意变化,这种人机结合的新一代智能界面,是智能制造的一个显著特征。
自组织超柔性:智能制造系统中的各组成单元能够依据工作任务的需要,自行组成一种最佳结构,其柔性不仅突出在运行方式上,而且突出在结构形式上,所以称这种柔性为超柔性,如同一群人类专家组成的群体,具有生物特征。
学习与维护:智能制造系统能够在实践中不断地充实知识库,具有自学习功能。同时,在运行过程中自行故障诊断,并具备对故障自行排除、自行维护的能力。这种特征使智能制造系统能够自我优化并适应各种复杂的环境。
发展前景1、人工智能技术。因为IMS的目标是计算机模拟制造业人类专家的智能活动,从而取代或延伸人的部分脑力劳动,因此人工智能技术成为IMS关键技术之一。IMS与人工智能技术(专家系统、人工神经网络、模糊逻辑)息息相关。
2、并行工程。针对制造业而言,并行工程是一种重要的技术方法学,应用于IMS中,将最大限度的减少产品设计的盲目性和设计的重复性。
3、信息网络技术。信息网络技术是制造过程的系统和各个环节“智能集成”化的支撑。信息网络同时也是制造信息及知识流动的通道。
4、虚拟制造技术。虚拟制造技术可以在产品设计阶段就模拟出该产品的整个生命周期,从而更有效,更经济、更灵活的组织生产,实现了产品开发周期最短,产品成本最低,产品质量最优,生产效率最高的保证。同时虚拟制造技术也是并行工程实现的必要前提。
5、自律能力构筑。即收集和理解环境信息和自身的信息并进行分析判断和规划自身行为的能力。强大的知识库和基于知识的模型是自律能力的基础。
6、人机一体化。智能制造系统不单单是“人工智能系统,而且是人机一体化智能系统,是一种混合智能。想以人工智能全面取代制造过程中人类专家的智能,独立承担分析、判断、决策等任务,说是不现实的。人机一体化突出人在制造系统中的核心地位,同时在智能机器的配合下,更好的发挥人的潜能,使达到一种相互协作平等共事的关系,使二者在不同层次上各显其能,相辅相成。
7、自组织和超柔性。智能制造系统中的各组成单元能够依据工作任务的需要,自行组成一种最佳结构,使其柔性不仅表现运行方式上,而且突出在结构形式上,所以称这种柔性为超柔性,类似于生物所具有的特征,如同一群人类专家组成的整体。